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ERROR CONTROL USING A CONCATENATED CODE

by
Bernhard Dorsch* and Warner H. Miller
Goddard Space Flight Center

INTRODUCTION

A coding scheme is described which is a concatenation of a biorthogonal code with a gener-
alized Hamming code. (Concatenation is the coding of a coded signal.) The generalized Hamming
code is a systematic code which has a Hamming distance of three and is described by using ele-
ments of a Galois field GF(2 s).

In this paper a calculation is made of the probability of bit error, assuming a particular de-
tection philosophy. A comparison, with respect to probability of bit error, of this coding scheme
with a binary symmetric uncoded channel is made. With the adopted detection philosophy, a trade-
off between data confidence and data quantity can be controlled by the experimenter. The design
of the encoder/decoder is also described.

This coding scheme originated from a coding effort as an aid to the infrared interferometer
spectrometer experiment on Mariner Mars Probe 1971, This scheme gives the experimenter con-
trol of (1) probability of bit error and (2) data quantity. Also, this code yields a higher confidence
level for data with respect to the existing Mariner telecommunication channel.

CODING TECHNIQUE

This coding technique links two codes, an inner and an outer code. The outer coder uses a
generalized Hamming code, while the inner coder uses a biorthogonal code. This linking technique
achieves longer codes (blocks) for which the probability of error in some cases can be decreased
by at least two orders of magnitude with respect to the inner or biorthogonal code.

In the spacecraft, the outer coder accepts serial source data symbols (bits) and reformats
them into blocks of data symbols plus check symbols. Each block (Figure 1) consists of k informa-
tion elements (words) and two check elements, each element of length s. The element length is
chosen to match the order of the biorthogonal code.

*Now at DFVLR, Institute for Satellite Electronics, Oberpfaffenhofen, West Germany.
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Figure 1—Block diagram for coding technique.

When decoding this concatenated code, the biorthogonal (inner) code is processed first by
cross-correlation followed by a2 maximum-likelihood decision. When an error is made, it is on
a word basis, resulting in bursts of bit errors. These burst lengths are related to the biortho-
gonal element length. For this reason, the outer code was designed as single-element-correcting,.

A detailed description of the biorthogonal code will not be given because this is a relatively

common code (see Reference 1). A description of the generalized Hamming code follows.

A NEW GENERALIZED HAMMING CODE

The generalized Hamming code is described in terms of elements of a Galois field GF(25)
of two check elements; one which determines the position of the erroneous element, and one which

determines its error pattern.

The Code

Each binary word b = (b,,b,, - - -

, b.) is regarded as one element b(z) = b, +b, z+ -~

+ bs z(s71)

of the Galois field GF(2¢); z is defined as a root of the primitive polynomial p(z) = 1+b z +b, z?
t---b_z® over GF(2). The code is the null space of the matrix

The generalized Hamming distance of this code is three {each code word is separated by at least
three elements) because of the linear independence of every two columns of H. (The elements 1, 2,
z? . .., z"" % are distinct.) This requires (n~3) < (2*-2) or n<(2%+1). Since this code has

3

distance three, it is one-element-error correcting.

For example, if the element has a length of six symbols, the primitive polynomial is p(z) = 1
+z +2z% over GF(2) with the null space matrix



Encoding

Code words are the vectors a = (a -,a.), a,of GF(2®), for which a - HT = 0; i.e.
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For example, let a, and a, be the check elements and a,, a,, a., and a; the information ele-
ments. Define P, through P, and p, through P, as the check symbols and d, through d,, as 24 in-
formation symbols.

a, = P, tP,z +P,z?+P,z3 + Pz + P, 2"

a, T Py tpyztpy2? tp,zd +p ozt +opgat

ag :dl+dzz+d322+dqz3+dsz4+d625

a, = d, + dsz+dgz2+dloz3+d“z4+d1225
ag 7 dyy tdigztdigz? vd 2% rd, et dyg2°

Calculation of P and p using Equations 1 and p(z) = 1+z+ 2% = 0 yields the parity equations:

Pl - dl + d7 + d13 * d19

P2 = d2 * dS * d14 * d20

P3 = d3 + d9 + d15 + d21

P4 = d4 + d10 + dlﬁ + d22

PS = ds * dll + d17 + d23

Pg = ds td, t dig * d24 (2)
3



and

p, = dy dy, *dy; tdy,

P, © d; td, vdjgtdy; td, td; Tdy

Py = djy tdg tdy td,, tdjy tdy,

P, = dyg tdj, Tdy td,tdy,

Py = dyy tdyg tdyy todg

Pg = dg T dp; Tdgtdy @)
Decoding
Syndrome: Let a' =a+f =(a, +f ,...,a_+f_ ) bethe erroneous block, where f represents

the error pattern. The Syndrome q = a’ - HT of a linear code is related to the error pattern f by

the equation

q = <a+f).HT = f'HT;

because a - HT = 0. For the above described generalized Hamming code,

r . T =
a H d;+ Ay
a = fl * f3 * f4 * + fn’
and
P n=3
q, =& f2 + f3 + f4 z + + fn z .

Ifq, 70, q, 70, an error is detected. For q, = q, = 0, two situations are possible:
1. No error occurred.

2. The error is not detectable.

Correction: For the Hamming distance of three, correction can be performed if a single ele-
ment is disturbed.

If an information element is disturbed (v > 3),
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N
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h
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N
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q, indicates the error pattern of the disturbed element. The minimum number u for which
q,2z™" = q, iSu=v-3. Thus u+3 = v is the position of the erroneous element.

If a check element is disturbed (v = 1 or v = 2), either q, = f #0 ,q, =0, 0r q, =0,
a,=f, #0.

If no element is disturbed, q, = q, = 0.
Hardware

Encoding

Source symbols are serially shifted into two shift registers, (v,,Y, ), where the parity ele-
ments a, and 2, are generated; see Figure 2. The "flip-flops" (Y, ,) of the feedback shift register
Y, , store the vectors y, = (v, o - - *V,, ,-, )» Or in polynomial representation, y, (z) =y, ,*v, 2

Pty e 2
Starting with the contents y, = y, = 0, the following operations are performed:

a. s shifts of the input and the registers Y, and Y, to the right with S, = 0 add the elements
a, toy, andy,. Simultaneously a, comes to the output.

b. One shift of Y, to the right withs, = 1 multipliesy, by z mod p(z).

a
Repeating the operation n -2 times yieldsy, =a, i 3 S o Ny o INPUT SUTPEI
and y, = a, by Equation 1. After switching s,, e — — °T2
. Y
2s shifts of both v, andy, (s,=0) to the right D v. o y L y _ﬂ
) 1,1 1,8
causes a, and a, to come to the output. 1 S'_l
. v, 2
T )’20 + )’21 + ess o Y2,5_1
s
Decoding b, b, a ’
See Figure 2. Decoding circuitry consists 51=11{.0
of hardware similar to the encoding hardware ] ENCODER
with the addition of a word detector (y, = v,). ,_3% —2 __Sn__INRUT
Also, Y, must be capable of being shifted to the 10,000 M1a1 , T20,000T251 0en0ueensl ]
left. Y
D Y10 Y11 .ele Y151 J
I 1
Syndrome: By repetition of the encoding ( WORD DETECTOR r =y ?) )
1 2
procedure the following are obtained: Y,
o Y 2 O22 REPY a2 © mmpagt Rt € 2t LAY g
' i
| '
y, = ay ta/+ +oaf ' o e @ '
Lo e S ol
v, T 8 tal+ tafzn? . .
Figure 2—Hamming code encoder and decoder.
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The first s parity bits (a, ) are shifted into Y,(S, = 0); the next s parity bits (a,’ ) are shifted
into v, ; this forms the total syndrome.

= ’ ’ ! PPN ! =
¥y a)’ tay *taj 4 ta, q; >
= ’ ! ' see ' -3 =
Yy a,) ta/ ta'z+ ta'z" q, -
The information elements (a,’, . - - , a') are stored temporarily.

Correction Technique: An error in an information element results in

v, = f, 7/ 0,

v

y, = f, zv73 2 0.

Multiplying y, by z* (performed by u shift of v, to the left with s, = 1) gives y,z™" =y, at the
position v = u+3 with a,’ shown to be the element in error.

If a check element is disturbed, the condition y, z™" = y, will never be achieved, and no infor-

mation element is assumed to be in error.

If no error occurs, the condition y, z™* = y, will be achieved byu = 0, andy, =y, = 0 will be

added to a;.

If more elements are wrong, no error correction is attempted and this data is erased.

QUANTITATIVE RESULTS

At the receiver, the noisy data is processed first by an inner decoder and then by an outer de-
coder. The inner decoder uses correlation and a maximum-likelihood detector to detect the binary
elements of length "'s". The probability of element error p(s) at the output of the inner decoder
can be calculated from the expression

2(s™1)oy

© o-v2/2 {v+(2ssNR)1'/2} o122/
p(s) = 1- J‘ ‘ - dv J dz
'(ZSSNR)‘“2 ﬁ? ‘{v*’(ZSSNR)l'lz} ﬁ;

where s is the number of symbols per element, and SNR is the signal-to-noise ratio defined as sig-
nal energy per symbol per single-sided noise power density (see Reference 1). From the inner de-
coder the detected binary signal with errors is passed to the outer decoder for parity checks on
each block of data.



Parity checks are performed by a detector and then by the corrector. The following algorithm
is used in the processing of each block of data:

1. The detector detects blocks in which there are known errors, and passes these blocks to
the corrector. The remaining blocks, considered to possess the highest confidence, are
passed to the user.

2. The corrector corrects blocks which have t or fewer element errors, where t is the max-
imum number of possible correctable error elements. It then discards those blocks which
it determines to have more than t element errors.

If the user requires his data to have the highest possible confidence, only the data from the
detector is used. However, if the user is willing to sacrifice confidence for data quantity, the cor-
rector data may be included with the detector data. Of course, the corrector data can always carry
a flag with it, indicating its lower confidence level.

Synchronization

In this paper, element and block synchronization are assumed to be perfect, and it is assumed
that the biorthogonal code vectors are synchronized with the block. Even though synchronization
is assumed, no loss in generality occurs in the following derivation because element synchroniza-
tion, which is needed to perform the correlation and maximum-likelihood decision, can easily be
derived from biorthogonal code vectors. This element synchronization property of the biorthogonal
code set can be enhanced by using a co-set code to maximize the comma freedom property (see
Reference 2). Block synchronization can be acquired by minimizing the discard rate. Synchroni-
zation of the biorthogonal code vectors with the block is by design.

Basic Equations

In Figure 3, probability of bit error at the
detector output is defined as P,, the prob-

Py —{ DETECTOR

ability of biterror at the corrector outputis P,
and the combined probability of bit error is p.. 1
A, through A, are defined to be the data quanti-
ties (normalized to unity) at the indicated places
in the figure. P,, P , P, and A  through A/ ave

calculated below. First, however, some expres-
sions from whichthe errordetection/correcting
capability can be determined must be developed CORRECTOR

to relate the generalized Hamming distance to he
the block length.
A3
The generalized Hamming code vector has
a length of n elements, k information elements Figure 3—Detector~corrector processing.



and m check elements. Each element length consists of s symbols. The described code is a spe-
cific case of a Reed-Solomon code, in which the minimum distance, d, between elements is related
to the number of check elements, m,by d = m +1, The maximum number of correctable elements
per block, t, is related to the check element by m = 2t,

1. The following is a calculation to determine the normalized data quantities A, and A,, and
the probability, P,, of bit error at the detector output.

The probability, P, that a block of m elements has no errors is:
PO = ( 1- p)m
where p is the probability of element error. One property of the code is that all errors of the min-

imum distance d can be detected. Therefore, the probability, P, , that d or more element errors
exist in the block is:

n . —
v L ()rasen
j=2t+1
Then the probability, P,, of undetectable errors is that fraction of P, which is:
P4 = 2_ms P3 )

The quantity of data, A,, at the detector output can now be calculated from the above expression:

A = P

+ —ms
2 o 2 P, .

The probability, P, , of bit error at the detector output is:

A ~ms n WB '’
P, +27"5 P, B

where the probability of block error is the first term of P,, given immediately below.

27" P,
P, + 2" P,

The approximate conditional probability of word error, given that a block is in error, the second

term of P, , is

2t t1



and P, represents the conditional probability of bit error, given that a word is in error. For a
biorthogonal inner coder with s greater than 5, P, is approximately equal to 1/2.

Blocks of data which are known to contain errors are passed to the corrector to be reprocessed.
The quantity of data A, is equal to 1-4,.

2, The following is a calculation of the quantities of corrected data, A,, and discarded data,
A, , and the probability, P,, of a bit error in the corrected data.

Assume that all blocks of data with t or fewer elements in error are correctable. Then the
probability, P, , that there are only correctable errors in a block is determined from the binomial
expression

t

e L)

i=1

The probability, P, , of uncorrectable error in a block (the probability that more than t ele-
ments in a block are in error) can be determined from

. n . _.
o B

j=tt1

The fraction, H, of uncorrectable data that is passed by the corrector is

n n n
<1>(2s_1)+ <2)(2§_ 1)2 + ...<t>(25_1>t

>( 2ms .-.1)

H =

The fraction of all incorrect data which is passed by the corrector is P, - H. The data quantity,
A,, at the corrector output can be predicted from the expression

Pl + I-{12’2
A 7 M\P P, )
The data quantity, A, , which is discarded as uncorrectable is given by
Pl + HPZ
Ay = A\ TR, )

The probability of bit error at the corrector output is given by

P <2t +1
Py ~ P, *HP, n Pyg -




where the probability that the block is in error, the first term of P, is

Pl * HPZ

and an approximation of the conditional probability of word error, given that the block is in error,

)

the second term of P, is

P, is the conditional probability of bit error given a word is in error.

WB

3. The quantity of data, A, and the probability, P, of bit error of the combined data from
the detector and the corrector are

108

T 8RR
o - P,A, T P A, -
c A,1TA,

If the channel information rate is to remain
constant after coding, an increase in chamnel
bandwidth is required to send the check elements.
This increase in bandwidth will result in a lower
effective SNR. The change in SNR from the situ-
ation when check elements are sent, to that when
no check elements are sent, can be computed from

- the equation

m
ASNR = 10 log o370

[A,] % DATA FLAGGED—{3.35] CODE

10"
(6.4)
where (m +k)/mis the increased bandwidth fac-

tor required by the Hamming code vectors.

[1.45])
1 l ! I I I L._ J The probability, P, , of bit error at the de-
tector output varies as a function of SNR as
shown in Figure 4. For these curves, at a con-
Figure 4—Probability of bit error at detector output for stant two check elements per block, the block
various SNR withm = 2,5 = 6, length k was varied from two to twelve elements.
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This generated the codes (4,2), (6,4), (10,8), and (14,12), The first number in the parentheses rep-
resents the total number of elements per block (m +k), and the second number represents the num-
ber of information elements per block (k), It was also assumed that the inner coder used a bi-
orthogonal code of length six. The numbers shown in brackets in Figure 4 denote the percentage

- of data having detected errors. Figure 5 shows a family of iso-probabilistic curves in which the
SNR can be determined from a given block length and a given bit error rate. The curves of Fig-
ure 5 are a replot of the data used in Figure 4, '

The next set of data was obtained after the operations of detection and correction had been
performed. Figure 6 shows a family of curves in which the probability, P., of bit error for the
combined outputs of the detector and corrector varies as a function of SNR. Figure 7 is a family
of iso-probabilistic curves in which the SNR can be determined from a given block length and a
given bit error rate.

Codes were selected to maintain a constant information-to-transmitied symbol rate of 2/3,
This was achieved by varying both the number of check elements and the number of information
elements per block. Codes considered were (6,4), (12,8), and (18,12). Table 1 shows the prob-
ability, P, ,
and the percentage of detected errors for vari-
ous SNR and codes.

of bit error at the detector output

[.0222]

sk [5.3]
122] 11.0]

[.00799]

s
zZ CODE
z {43] 10°F (14, 12)
sk (.00337]
[.000882]
2 ]
~—— 108 0’ F CODE—\
______ 6
[A,] % DATA FLAGGED=" (6, 4)
1+ - [.000168]
1 1 | | 1 I 10 1 { 1 1 | §
2 4 é 8 10 12 0 1 2 3 4 5 6 7
K SNR
Figure 5—Ilso-probabilistic curves as a function of k Figure 6—Probability of bit error after error correction
withm = 2, s = 6; for error detection only. for various SNR withm = 2, s = 6.
11



nmnan—

-

A ;< 0.0036%

Table 1

Probability, PA , of Undetected Bit Error and the
Percentage of Detected Errors for Various
Rate-2/3 Codes as a Function of SNR.

Figure 7—lso-probabilistic curves as a function of k
withm = 2, s = 6; with error corrections.

Probability of bit error for the combined
outputs of the detector and corrector is shown
in Figure 8 for various SNR and rate-2/3 codes.
The numbers in brackets indicate the percentage
of data that is detected in error.

APPLICATION OF CODE (6,4) TO THE
MARINER MARS SPACECRAFT

Mariner Mars Probe 1971 is an orbital
mission on which an infrared interferometer
spectrometer (IRIS) experiment (Reference 3)
and a felevision experiment are to provide in-
formation about the Martian atmosphere and

surface,

The spacecrafft telecommunication

channel was designed primarily for the tele-
vision experiment, which does not require a
data confidence as great as that of the IRIS ex-

periment,.

Under worst-case conditions, the

confidence required by the IRIS experiment is
almost two orders of magnitude greater than
that which the telecommunication channel

12

SNR

Code SNR P, A, in %
2.76 db 8.35x 1077 39.1
3.76 5.26 x 1078 18.5
4.76 1.60x 107° 6.3
(6.4) 5.76 1.76 x 10711 1.4
6.76 5.33 x 10714 0.21
7.76 3.13x 1077 0.017
2.76 db 5.20 x 10711 62.9
3.76 5,20 x 10713 33.6
(12,8) 4.76 1.54 x 10715 12.2
5.76 8.46 x 1071° 2.8
6.76 5.19 x 10723 0.42
2.76 db 3.61 % 10715 77.4
3.76 5.80 x 10718 45.9
(18,12) 4.76 1.69 x 1072! 17.7
5.76 4.54 x 10726 4.28
107 T T
R=2/3
CODE s=6
(12,8)
10 —
CODE
(18,12)
[4.93]
10° —
[.00798]
108 —
10’ ~
[A3]% DATA FLAGGED —[.00367]
. [.000305]
108 1 | f :
0 2 4 6 7

Figure 8—Probability of bit error after error correction
for rate 2/3 codes, s = 6, for various SNR.




provides. This higher confidence requirement of the IRIS experiment was met by concatenating
the IRIS source data with a (6,4) Hamming code before using the existing Mariner sixth order bi-
orthogonal code.

Performing a Fourier transformation on the IRIS data should give a radiation spectrum from
the interferogram. A typical infrared interferometer interferogram of an atmospheric emission
for a warm blackbody calibration is shown in Figure 9. The spectirum which was derived from that
interferogram is shown in Figure 10. Also shown in Figure 10 is the effect of an error on the spec-
trum. Note that information about the atmospheric content is masked by an oscillatory wave.

PARITY &

ERROR CORRECTION J"/513WORDS
APPLIED TO THIS DATA |

|
|
WARM BLACKBODY CALIBRATION L

l"VISUAL & COMPUTER DECISIONS‘I"I —"‘_VISUAL & COMPUTER DECISIONS_’I
1792, 2303
[
4096 WORDS

ATMOSPHERIC EMISSI

| J!
| I
| |
|

| |
| |

High data confidence is only required for
the center portion of the interferogram, for this
data has little redundancy. Therefore, it is this
center portion of the data whichis concatenated-
coded. One error here could cause the frame to
be discarded or misinterpreted. Coding is not
required for the two side portions of the inter- L
ferogram because this data is highly redundant —
s0 that errors are easily detected at the ground —
processor before the Fourier transformation is [~ -
performed, I~

(a) NO ERRORS

T

(b) EFFECT OF AN ERROR
The IRIS experiment data is formatted to N L R R N R Y [

start each frame with 64 words of housekeeping Figure 10—Spectrum of interferogram.
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data, This is followed by 4096 words of the interferometer data and 64 more words of housekeeping
data., The remaining unused 501 words are set to zeros. These 501 words make the IRIS frame
compatible with the TV frame. Each word of the frame consists of 12 bits.

Coding requirements specified by the experimenter were:

1. The probability of bit error was not to exceed 1 X 1075 even under worst-case conditions.
2. The IRIS data format was not to be disturbed.

3. An encoder failure was not to affect the experiment data.

Requirement 1 was satisfied by choosing the Hamming code (6,4). For schemes using just the
biorthogonal code and the concatenation of the (6,4) code with the biorthogonal code, a plot of prob-
ability of bit error versus the time that the spacecraft is in Martian orbit is shown in Figure 11.
These curves are shown both for the nominal telecommunication channel and for the worst-case
conditions. Since the check elements utilize part of the unused 501 words at the end of the frame, no
additional bits or bandwidth penalties occur. These curves were drawn under the assumption that
the IRIS data words are not synchronized to the
biorthogonal code vectors. If the systemis syn-

chronized, the bit error rate will decrease ap- 10° T T T T T
proximately by a factor of 10 (see Figure 12). :
|
|
|
|
. PO, 2 (high gain 102 : -
/N antenna)
SN / BIORTHOGONAL (s = 6)
- <&, NOM. -POS, 2
i 10 r— ~/ " BI-ORTH {s=6)
N ——~" __ TOL. -POS, 2 (6.9)
&7 4 " ) 5 I\
4 & ‘3F\ -
3 104~ &7 5107 A
£ g </ NOM.-pOs.2} &
w ]0 azt / [=3)
w S v 5
g i & !
a2 - 10 » = |
w102 = S/ E, |
o o &/ e I I _
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Requirement 2 was satisfied by not changing the real-time sending of biorthogonal-encoded
interferometer data. The 501 unused words in the original format were partially filled with the
check words. The real-time data were simultaneously biorthogonally coded and sent to the Ham-
ming encoder. The resulting Hamming check elements were stored until the 501-word block time
occurred, whereupon they were biorthogonally encoded and transmitted.

Requirement 3 was satisfied by designing the encoder so that if failure occurred, the check
elements would be in error and the data confidence level would revert to that which the biortho-
gonal code vectors would normally provide.

(d d,. d d, d

24, T23, 22 e+ 4,

5, 95 d1) IN;UT

Encoding

The (6,4) Hamming encoder receives the
IRIS source symbols and reformats them so
that each code vector (block) consists of two
12-symbol data elements and one 12-symbol
check element., This encoding can be accom-

plished with two 6-symbol shift registers and

feedback networks as shown in Figure 13. One 4

of the registers generates a 6-symbol column 4@{%

check element; the other register generates a 4

6-symbol word check element. cLOCK ZERO - BITS 1-5
ONE - BIT 6

The encoding procedure is accomplished in
four steps: Figure 13—Hamming (6,4) encoder.

1. Set the registers to zero state.

2. Shift 24 information symbols simultaneously into the two shift registers and to the biortho-
gonal encoder. The binary status of the shift registers after the 24th information symbol
has been shifted, constituting the complement of the check elements transmitted.

3. Disable the feedback circuitry.

4. Shift the contents of these shift registers into storage. This storage will be read into the
biorthogonal encoder during the previously unused 501 word times.

Decoding

To decode the (6,4) Hamming code vectors, a circuit similar to the encoder can be used with
the exception that the circuit should be able to shift to the left as well as to the right. The decod-
ing procedure is accomplished in four steps:

1. Set the registers to zero state.
2. Shift 24 information symbols into the two shift registers.
3. Compare the states of the shift registers to the transmitted check symbols.

(a) If the compared elements agree or if only one of the elements disagrees, the 24 in-
formation symbols are assumed correct.
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(b)

If both check elements disagree, an error is assumed to have occurred in the 24 in-
formation symbols.

If 3(a) occurs, the registers are reset to zero and the procedure is repeated on the next 24

information symbols.

If 3(b) occurs, the binary states of the registers are compared to the transmitted check

symbols.

(@)

(b)

(c)

If the patterns agree, the errors are assumed to be in the last information element of
the block, and the symbol positions which indicated an error are corrected. The 24
information symbols are assumed error-free, and step 1 is repeated.

If the patterns disagree, the contents in the word check element shift register are
shifted one position to the left. Comparisons are again made. If the error patterns cor-
relate, the error is assumed to occur in the previous information element of the block.
The registers which indicated an error are those positions which are corrected. After
correction, the block is assumed error-free, and step 1 is repeated. Corrected blocks
may be flagged as having higher probability of bit error than the uncorrected data.

If the patterns disagree, the contents of the word-check element shift register are
shifted one position to the left, and comparisons are again made. If the error patterns
agree, the previous information element of the block is assumed in error. If the error
patterns disagree, one more shift is attempted. If the patterns do not correlate after
the third shift, the error is assumed to have occurred in more than one word, and the
block is flagged as having an uncorrectable error.

CONCLUSION

One advantage of concatenated coding is that each experimenter can be provided with his own

reliability (confidence level). The telecommunications channel may be designed for the lowest
confidence level not loading the channel with the experiments requiring higher confidence. The
experimenter requiring higher confidence would be given extra bits for coding.

With a concatenated code as used on Mariner 71, which consists of a biorthogonal (s = 6) and

a generalized Hamming code (6,4), the following characteristics can be noted:

16

(1) The probability of bit error at nominal signal level as received from Mars is improved

@)

3)

by two orders of magnitude if the generalized Hamming code elements (words) are not
synchronized to the biorthogonal code elements and by three orders if the two codes are

synchronized.

The experimenter's data format is not disturbed since the parity check elements are in-
serted into the 501 wnused words at the end of the experimenter's frame.

The experiment's data is unaffected if the algebraic coder fails.



(4) The decoding of the algebraic code can be achieved, without a computer, with simple
hardware similar to that used in the spacecrait plus a six symbol comparator.

(5) The decoding procedure allows the experimenter to select a processing scheme which will
maximize data quantity for a given probability of bit error threshold.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, Maryland, December 1, 1969
685-30-01-01-51
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